We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.
Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model / Andreis, Luisa; Barbato, David; Collet, Francesca; Formentin, Marco; Provenzano, Luigi. - In: NONLINEARITY. - ISSN 0951-7715. - 29:3(2016), pp. 1156-1169. [10.1088/0951-7715/29/3/1156]
Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model
PROVENZANO, LUIGI
2016
Abstract
We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.File | Dimensione | Formato | |
---|---|---|---|
Andreis_Strong_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
612.8 kB
Formato
Adobe PDF
|
612.8 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.