We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.

Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model / Andreis, Luisa; Barbato, David; Collet, Francesca; Formentin, Marco; Provenzano, Luigi. - In: NONLINEARITY. - ISSN 0951-7715. - 29:3(2016), pp. 1156-1169. [10.1088/0951-7715/29/3/1156]

Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model

PROVENZANO, LUIGI
2016

Abstract

We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.
2016
Infinite dimensional system of SDEs; Inviscid dyadic model; Pathwise uniqueness; Strong solution; Strong statistically stationary solution
01 Pubblicazione su rivista::01a Articolo in rivista
Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model / Andreis, Luisa; Barbato, David; Collet, Francesca; Formentin, Marco; Provenzano, Luigi. - In: NONLINEARITY. - ISSN 0951-7715. - 29:3(2016), pp. 1156-1169. [10.1088/0951-7715/29/3/1156]
File allegati a questo prodotto
File Dimensione Formato  
Andreis_Strong_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 612.8 kB
Formato Adobe PDF
612.8 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1446682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact